Popular Matchings: Structure and Algorithms
نویسندگان
چکیده
An instance of the popular matching problem (POP-M) consists of a set of applicants and a set of posts. Each applicant has a preference list that strictly ranks a subset of the posts. A matching M of applicants to posts is popular if there is no other matching M ′ such that more applicants prefer M ′ to M than prefer M to M . Abraham et al [1] described a linear time algorithm to determine whether a popular matching exists for a given instance of POP-M, and if so to find a largest such matching. A number of variants and extensions of POP-M have recently been studied. This paper provides a characterization of the set of popular matchings for an arbitrary POP-M instance in terms of a structure called the switching graph, a directed graph computable in linear time from the preference lists. We show that the switching graph can be exploited to yield efficient algorithms for a range of associated problems, including the counting and enumeration of the set of popular matchings, generation of a popular matching uniformly at random, finding all applicant-post pairs that can occur in a popular matching, and computing popular matchings that satisfy various additional optimality criteria. Our algorithms for computing such optimal popular matchings improve those described in a recent paper by Kavitha and Nasre [6].
منابع مشابه
Popular Mixed Matchings
We study the problem of matching applicants to jobs under one-sided preferences; that is, each applicant ranks a non-empty subset of jobs under an order of preference, possibly involving ties. A matching M is said to be more popular than T if the applicants that prefer M to T outnumber those that prefer T to M . A matching is said to be popular if there is no matching more popular than it. Equi...
متن کاملCharacterizing a Set of Popular Matchings Defined by Preference Lists with Ties
In this paper, we give a characterization of a set of popular matchings in a bipartite graph with one-sided preference lists. The concept of a popular matching was first introduced by Gardenfors [5]. Recently, Abraham et al. [1] discussed a problem for finding a popular matching and proposed polynomial time algorithms for problem instances defined by preference lists with or without ties. McDer...
متن کاملTwo-sided popular matchings in bipartite graphs with forbidden/forced elements and weights
Two-sided popular matchings in bipartite graphs are a well-known generalization of stable matchings in the marriage setting, and they are especially relevant when preference lists are incomplete. In this case, the cardinality of a stable matching can be as small as half the size of a maximum matching. Popular matchings allow for assignments of larger size while still guaranteeing a certain fair...
متن کاملPopular and Clan-Popular b-Matchings
Suppose that each member of a set of agents has a preference list of a subset of houses, possibly involving ties, and each agent and house has their capacity denoting the maximum number of houses/agents (respectively) that can be matched to him/her/it. We want to find a matching M , called popular, for which there is no other matching M ′ such that more agents prefer M ′ to M than M to M ′, sub...
متن کاملPopular Half-Integral Matchings
In an instance G = (A∪B,E) of the stable marriage problem with strict and possibly incomplete preference lists, a matchingM is popular if there is no matchingM ′ where the vertices that prefer M ′ to M outnumber those that prefer M to M ′. All stable matchings are popular and there is a simple linear time algorithm to compute a maximum-size popular matching. More generally, what we seek is a mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Optim.
دوره 22 شماره
صفحات -
تاریخ انتشار 2009